Copied to
clipboard

G = C428Q8order 128 = 27

8th semidirect product of C42 and Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C428Q8, C23.505C24, C22.2852+ (1+4), C22.2082- (1+4), C424C4.22C2, C425C4.10C2, (C2×C42).592C22, (C22×C4).124C23, C22.126(C22×Q8), (C22×Q8).147C22, C2.70(C22.45C24), C23.83C23.21C2, C23.78C23.13C2, C23.63C23.34C2, C2.C42.235C22, C23.67C23.47C2, C2.16(C23.41C23), C2.37(C23.37C23), C2.53(C22.50C24), (C4×C4⋊C4).76C2, (C2×C4).127(C2×Q8), (C2×C4).163(C4○D4), (C2×C4⋊C4).344C22, C22.381(C2×C4○D4), SmallGroup(128,1337)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C428Q8
C1C2C22C23C22×C4C2×C42C424C4 — C428Q8
C1C23 — C428Q8
C1C23 — C428Q8
C1C23 — C428Q8

Subgroups: 340 in 198 conjugacy classes, 100 normal (22 characteristic)
C1, C2 [×3], C2 [×4], C4 [×22], C22 [×3], C22 [×4], C2×C4 [×14], C2×C4 [×38], Q8 [×8], C23, C42 [×4], C42 [×6], C4⋊C4 [×14], C22×C4 [×3], C22×C4 [×12], C2×Q8 [×10], C2.C42 [×4], C2.C42 [×16], C2×C42 [×3], C2×C42 [×2], C2×C4⋊C4 [×8], C22×Q8 [×2], C424C4, C4×C4⋊C4, C425C4, C23.63C23 [×4], C23.67C23 [×4], C23.78C23 [×2], C23.83C23 [×2], C428Q8

Quotients:
C1, C2 [×15], C22 [×35], Q8 [×4], C23 [×15], C2×Q8 [×6], C4○D4 [×8], C24, C22×Q8, C2×C4○D4 [×4], 2+ (1+4), 2- (1+4), C23.37C23 [×2], C23.41C23, C22.45C24 [×2], C22.50C24 [×2], C428Q8

Generators and relations
 G = < a,b,c,d | a4=b4=c4=1, d2=c2, ab=ba, cac-1=ab2, dad-1=a-1, bc=cb, dbd-1=a2b, dcd-1=c-1 >

Smallest permutation representation
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 16 59 27)(2 13 60 28)(3 14 57 25)(4 15 58 26)(5 35 111 81)(6 36 112 82)(7 33 109 83)(8 34 110 84)(9 56 32 41)(10 53 29 42)(11 54 30 43)(12 55 31 44)(17 64 68 49)(18 61 65 50)(19 62 66 51)(20 63 67 52)(21 100 72 45)(22 97 69 46)(23 98 70 47)(24 99 71 48)(37 113 87 126)(38 114 88 127)(39 115 85 128)(40 116 86 125)(73 124 94 103)(74 121 95 104)(75 122 96 101)(76 123 93 102)(77 120 90 107)(78 117 91 108)(79 118 92 105)(80 119 89 106)
(1 61 53 48)(2 51 54 100)(3 63 55 46)(4 49 56 98)(5 118 113 103)(6 106 114 121)(7 120 115 101)(8 108 116 123)(9 23 26 68)(10 71 27 18)(11 21 28 66)(12 69 25 20)(13 19 30 72)(14 67 31 22)(15 17 32 70)(16 65 29 24)(33 90 85 75)(34 78 86 93)(35 92 87 73)(36 80 88 95)(37 94 81 79)(38 74 82 89)(39 96 83 77)(40 76 84 91)(41 47 58 64)(42 99 59 50)(43 45 60 62)(44 97 57 52)(102 110 117 125)(104 112 119 127)(105 126 124 111)(107 128 122 109)
(1 119 53 104)(2 118 54 103)(3 117 55 102)(4 120 56 101)(5 100 113 51)(6 99 114 50)(7 98 115 49)(8 97 116 52)(9 94 26 79)(10 93 27 78)(11 96 28 77)(12 95 25 80)(13 90 30 75)(14 89 31 74)(15 92 32 73)(16 91 29 76)(17 35 70 87)(18 34 71 86)(19 33 72 85)(20 36 69 88)(21 39 66 83)(22 38 67 82)(23 37 68 81)(24 40 65 84)(41 122 58 107)(42 121 59 106)(43 124 60 105)(44 123 57 108)(45 126 62 111)(46 125 63 110)(47 128 64 109)(48 127 61 112)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,16,59,27)(2,13,60,28)(3,14,57,25)(4,15,58,26)(5,35,111,81)(6,36,112,82)(7,33,109,83)(8,34,110,84)(9,56,32,41)(10,53,29,42)(11,54,30,43)(12,55,31,44)(17,64,68,49)(18,61,65,50)(19,62,66,51)(20,63,67,52)(21,100,72,45)(22,97,69,46)(23,98,70,47)(24,99,71,48)(37,113,87,126)(38,114,88,127)(39,115,85,128)(40,116,86,125)(73,124,94,103)(74,121,95,104)(75,122,96,101)(76,123,93,102)(77,120,90,107)(78,117,91,108)(79,118,92,105)(80,119,89,106), (1,61,53,48)(2,51,54,100)(3,63,55,46)(4,49,56,98)(5,118,113,103)(6,106,114,121)(7,120,115,101)(8,108,116,123)(9,23,26,68)(10,71,27,18)(11,21,28,66)(12,69,25,20)(13,19,30,72)(14,67,31,22)(15,17,32,70)(16,65,29,24)(33,90,85,75)(34,78,86,93)(35,92,87,73)(36,80,88,95)(37,94,81,79)(38,74,82,89)(39,96,83,77)(40,76,84,91)(41,47,58,64)(42,99,59,50)(43,45,60,62)(44,97,57,52)(102,110,117,125)(104,112,119,127)(105,126,124,111)(107,128,122,109), (1,119,53,104)(2,118,54,103)(3,117,55,102)(4,120,56,101)(5,100,113,51)(6,99,114,50)(7,98,115,49)(8,97,116,52)(9,94,26,79)(10,93,27,78)(11,96,28,77)(12,95,25,80)(13,90,30,75)(14,89,31,74)(15,92,32,73)(16,91,29,76)(17,35,70,87)(18,34,71,86)(19,33,72,85)(20,36,69,88)(21,39,66,83)(22,38,67,82)(23,37,68,81)(24,40,65,84)(41,122,58,107)(42,121,59,106)(43,124,60,105)(44,123,57,108)(45,126,62,111)(46,125,63,110)(47,128,64,109)(48,127,61,112)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,16,59,27)(2,13,60,28)(3,14,57,25)(4,15,58,26)(5,35,111,81)(6,36,112,82)(7,33,109,83)(8,34,110,84)(9,56,32,41)(10,53,29,42)(11,54,30,43)(12,55,31,44)(17,64,68,49)(18,61,65,50)(19,62,66,51)(20,63,67,52)(21,100,72,45)(22,97,69,46)(23,98,70,47)(24,99,71,48)(37,113,87,126)(38,114,88,127)(39,115,85,128)(40,116,86,125)(73,124,94,103)(74,121,95,104)(75,122,96,101)(76,123,93,102)(77,120,90,107)(78,117,91,108)(79,118,92,105)(80,119,89,106), (1,61,53,48)(2,51,54,100)(3,63,55,46)(4,49,56,98)(5,118,113,103)(6,106,114,121)(7,120,115,101)(8,108,116,123)(9,23,26,68)(10,71,27,18)(11,21,28,66)(12,69,25,20)(13,19,30,72)(14,67,31,22)(15,17,32,70)(16,65,29,24)(33,90,85,75)(34,78,86,93)(35,92,87,73)(36,80,88,95)(37,94,81,79)(38,74,82,89)(39,96,83,77)(40,76,84,91)(41,47,58,64)(42,99,59,50)(43,45,60,62)(44,97,57,52)(102,110,117,125)(104,112,119,127)(105,126,124,111)(107,128,122,109), (1,119,53,104)(2,118,54,103)(3,117,55,102)(4,120,56,101)(5,100,113,51)(6,99,114,50)(7,98,115,49)(8,97,116,52)(9,94,26,79)(10,93,27,78)(11,96,28,77)(12,95,25,80)(13,90,30,75)(14,89,31,74)(15,92,32,73)(16,91,29,76)(17,35,70,87)(18,34,71,86)(19,33,72,85)(20,36,69,88)(21,39,66,83)(22,38,67,82)(23,37,68,81)(24,40,65,84)(41,122,58,107)(42,121,59,106)(43,124,60,105)(44,123,57,108)(45,126,62,111)(46,125,63,110)(47,128,64,109)(48,127,61,112) );

G=PermutationGroup([(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,16,59,27),(2,13,60,28),(3,14,57,25),(4,15,58,26),(5,35,111,81),(6,36,112,82),(7,33,109,83),(8,34,110,84),(9,56,32,41),(10,53,29,42),(11,54,30,43),(12,55,31,44),(17,64,68,49),(18,61,65,50),(19,62,66,51),(20,63,67,52),(21,100,72,45),(22,97,69,46),(23,98,70,47),(24,99,71,48),(37,113,87,126),(38,114,88,127),(39,115,85,128),(40,116,86,125),(73,124,94,103),(74,121,95,104),(75,122,96,101),(76,123,93,102),(77,120,90,107),(78,117,91,108),(79,118,92,105),(80,119,89,106)], [(1,61,53,48),(2,51,54,100),(3,63,55,46),(4,49,56,98),(5,118,113,103),(6,106,114,121),(7,120,115,101),(8,108,116,123),(9,23,26,68),(10,71,27,18),(11,21,28,66),(12,69,25,20),(13,19,30,72),(14,67,31,22),(15,17,32,70),(16,65,29,24),(33,90,85,75),(34,78,86,93),(35,92,87,73),(36,80,88,95),(37,94,81,79),(38,74,82,89),(39,96,83,77),(40,76,84,91),(41,47,58,64),(42,99,59,50),(43,45,60,62),(44,97,57,52),(102,110,117,125),(104,112,119,127),(105,126,124,111),(107,128,122,109)], [(1,119,53,104),(2,118,54,103),(3,117,55,102),(4,120,56,101),(5,100,113,51),(6,99,114,50),(7,98,115,49),(8,97,116,52),(9,94,26,79),(10,93,27,78),(11,96,28,77),(12,95,25,80),(13,90,30,75),(14,89,31,74),(15,92,32,73),(16,91,29,76),(17,35,70,87),(18,34,71,86),(19,33,72,85),(20,36,69,88),(21,39,66,83),(22,38,67,82),(23,37,68,81),(24,40,65,84),(41,122,58,107),(42,121,59,106),(43,124,60,105),(44,123,57,108),(45,126,62,111),(46,125,63,110),(47,128,64,109),(48,127,61,112)])

Matrix representation G ⊆ GL6(𝔽5)

020000
200000
000400
004000
000040
000004
,
010000
100000
003000
000300
000040
000004
,
100000
010000
002000
000300
000020
000043
,
030000
200000
000200
002000
000023
000003

G:=sub<GL(6,GF(5))| [0,2,0,0,0,0,2,0,0,0,0,0,0,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,2,4,0,0,0,0,0,3],[0,2,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,0,0,2,0,0,0,0,0,0,0,2,0,0,0,0,0,3,3] >;

38 conjugacy classes

class 1 2A···2G4A···4H4I···4Z4AA4AB4AC4AD
order12···24···44···44444
size11···12···24···48888

38 irreducible representations

dim111111112244
type++++++++-+-
imageC1C2C2C2C2C2C2C2Q8C4○D42+ (1+4)2- (1+4)
kernelC428Q8C424C4C4×C4⋊C4C425C4C23.63C23C23.67C23C23.78C23C23.83C23C42C2×C4C22C22
# reps1111442241611

In GAP, Magma, Sage, TeX

C_4^2\rtimes_8Q_8
% in TeX

G:=Group("C4^2:8Q8");
// GroupNames label

G:=SmallGroup(128,1337);
// by ID

G=gap.SmallGroup(128,1337);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,224,253,120,758,723,184,675,248]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=c^2,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽